Square Root Table: Quick Reference for Numbers 1–100

Comprehensive Square Root Table: Roots, Squares, and TipsA solid grasp of square roots and squares is a foundation of arithmetic and algebra. This comprehensive guide provides an easy-to-use square root table, explains the relationship between squares and square roots, shows quick mental methods for estimating roots, and offers practical tips for using roots in math problems, engineering, and everyday life.


What is a square and a square root?

  • A square of a number x is the result of multiplying x by itself: x^2.
  • A square root of a nonnegative number y is a number r such that r^2 = y. The principal square root is the nonnegative value, written as √y.
  • Example: The square of 7 is 49, and √49 = 7.

Why square roots matter

Square roots appear in geometry (areas, Pythagorean theorem), physics (wave equations, kinematics), statistics (standard deviation), finance (volatility measures), and many applied problems. Knowing common square roots and how to approximate others quickly saves time and reduces calculation errors.


Square root table (1–200) — principal roots rounded to 4 decimal places

Below is a compact reference for principal square roots of integers from 1 through 200, rounded to four decimal places.

n √n n √n n √n n √n
1 1.0000 51 7.1414 101 10.0499 151 12.2882
2 1.4142 52 7.2111 102 10.0995 152 12.3288
3 1.7321 53 7.2801 103 10.1489 153 12.3693
4 2.0000 54 7.3485 104 10.1984 154 12.4097
5 2.2361 55 7.4162 105 10.2460 155 12.4500
6 2.4495 56 7.4833 106 10.2956 156 12.4900
7 2.6458 57 7.5498 107 10.3441 157 12.5299
8 2.8284 58 7.6158 108 10.3923 158 12.5698
9 3.0000 59 7.6811 109 10.4403 159 12.6095
10 3.1623 60 7.7460 110 10.4881 160 12.6491
11 3.3166 61 7.8102 111 10.5357 161 12.6886
12 3.4641 62 7.8740 112 10.5830 162 12.7279
13 3.6056 63 7.9373 113 10.6301 163 12.7671
14 3.7417 64 8.0000 114 10.6771 164 12.8062
15 3.8730 65 8.0623 115 10.7238 165 12.8452
16 4.0000 66 8.1240 116 10.7703 166 12.8841
17 4.1231 67 8.1854 117 10.8167 167 12.9228
18 4.2426 68 8.2462 118 10.8628 168 12.9615
19 4.3589 69 8.3066 119 10.9087 169 13.0000
20 4.4721 70 8.3666 120 10.9545 170 13.0384
21 4.5826 71 8.4261 121 11.0000 171 13.0767
22 4.6904 72 8.4853 122 11.0454 172 13.1149
23 4.7958 73 8.5440 123 11.0905 173 13.1531
24 4.8990 74 8.6023 124 11.1355 174 13.1914
25 5.0000 75 8.6603 125 11.1803 175 13.2294
26 5.0990 76 8.7178 126 11.22497 176 13.2665
27 5.1962 77 8.77496 127 11.2694 177 13.3041
28 5.2915 78 8.8318 128 11.3137 178 13.3417
29 5.3852 79 8.8882 129 11.3578 179 13.3791
30 5.4772 80 8.9443 130 11.4018 180 13.4164
31 5.5678 81 9.0000 131 11.4455 181 13.4536
32 5.6570 82 9.0554 132 11.4891 182 13.4907
33 5.7446 83 9.1104 133 11.5326 183 13.5277
34 5.8309 84 9.1652 134 11.5758 184 13.5647
35 5.9161 85 9.2195 135 11.6189 185 13.6015
36 6.0000 86 9.2736 136 11.6620 186 13.6382
37 6.0828 87 9.3274 137 11.7047 187 13.6748
38 6.1644 88 9.3808 138 11.7473 188 13.7113
39 6.2440 89 9.4330 139 11.7898 189 13.7477
40 6.3249 90 9.4868 140 11.8322 190 13.7840
41 6.4031 91 9.5394 141 11.8743 191 13.8203
42 6.4807 92 9.5917 142 11.9164 192 13.8564
43 6.5574 93 9.6437 143 11.9583 193 13.8924
44 6.6332 94 9.6954 144 12.0000 194 13.9284
45 6.7082 95 9.7468 145 12.0415 195 13.9642
46 6.7823 96 9.7980 146 12.0830 196 14.0000
47 6.8557 97 9.8489 147 12.1244 197 14.0357
48 6.9282 98 9.8995 148 12.1655 198 14.0712
49 7.0000 99 9.9499 149 12.2066 199 14.1067
50 7.0711 100 10.0000 150 12.2474 200 14.1421

How to memorize and use the table efficiently

  • Memorize perfect squares up to at least 15^2 (225). Those anchor points let you estimate nearby roots quickly.
  • Group numbers by decade (1–10, 11–20, etc.) and practice estimating midpoints.
  • Use the method of linear approximation: for n near a perfect square a^2, √n ≈ a + (n − a^2)/(2a). Example: for n = 50, nearest square 49 (a=7): √50 ≈ 7 + (1)/(14) = 7.0714 (actual 7.0711).
  • For mental checks, square the estimated root to see how close it gets to the original number.

Quick methods to approximate square roots

  1. Newton’s method (Babylonian method)

    • Start with guess x0. Iterate x_{k+1} = (x_k + n/x_k)/2. Converges quadratically.
    • Example: √10 start x0=3, x1=(3+⁄3)/2=3.1667, x2≈3.1623.
  2. Binary search

    • For positive n, search interval [0, max(1, n)] halving until desired precision.
  3. Continued fractions

    • Useful for high-precision rational approximations; more advanced.

Common pitfalls and mistakes

  • Confusing ± roots: equation x^2 = 9 has solutions x = 3 and x = −3, but the principal root √9 = 3.
  • Rounding too early in multi-step problems can amplify error—keep 4–6 significant digits until the final step.
  • Using approximate roots without checking bounds can produce incorrect inequality conclusions.

Applications and examples

  • Geometry: side of square with area 200 is √200 ≈ 14.1421.
  • Pythagorean theorem: for legs 5 and 12, hypotenuse = √(5^2+12^2)=√169=13.
  • Physics: RMS speed uses square roots in averaging squared velocities.
  • Finance: volatility scaling uses square root of time.

Printable and cheat-sheet suggestions

  • Create a one-page printable with perfect squares, square roots for 1–100 (2 decimal places), and the linear approximation formula.
  • For exams, fold the sheet so you can quickly scan decade groups; practice estimating without a calculator.

Reference: ready-to-use formulas

  • Square: x^2
  • Principal square root: √x (nonnegative)
  • Linear approximation near a^2: √n ≈ a + (n − a^2)/(2a)
  • Newton iteration: x_{k+1} = (x_k + n/x_k)/2

If you want, I can: provide a printable PDF, expand the table beyond 200, or add step-by-step examples converting decimals to roots.

Comments

Leave a Reply

Your email address will not be published. Required fields are marked *